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Abstract

Based on the dynamical theories of water waves and Mindlin thick plates, the diffraction of surface waves by a

floating elastic plate is presented by using the Wiener–Hopf technique. Firstly, the problem is related to a wave guide in

water of finite depth, which is analysed to determine the poles. The resulting hybrid boundary value problem is reduced

to solving an infinite system of linear algebraic equations. The results obtained are compared with those calculated by

an alternative analysis, and with experimental data. Finally, the effects of the geometric and physical parameters on the

distribution of deflection and bending moments in plates are analysed and discussed.

r 2007 Elsevier Ltd. All rights reserved.
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1. Introduction

In recent years, the problem of the hydroelastic behaviour of a plate floating on the sea surface has received a great

deal of attention. This interest was connected with the design of various floating platforms, artificial islands, airports,

space-vehicle launch sites, etc. The dimensions of these structures are very large, which makes it difficult to satisfy the

similarity criteria in carrying out experimental investigations. Therefore, numerical simulation is important in studying

the hydroelastic behaviour of floating plates and the diffraction of surface waves.

Based on the eigenfunction expansion-matching method, Wu et al. (1995) analysed the wave-induced responses of an

elastic floating plate by using modal expansions of the structural motion. Khabakhpasheva and Korobkin (2002)

analysed simultaneously the plane problem of the hydroelastic behaviour of floating plates under the influence of

periodic surface water waves based on hydroelasticity theory, and the expansions of the hydrodynamic pressure and the

deflection made with respect to different basis functions. Linton and Chung (2003) solved the scattering of water waves

by the edge of a semi-infinite ice sheet in a finite depth ocean by using the residue calculus technique. Andrianov and

Hermans (2003, 2005) investigated the hydroelastic responses of a two-dimensional very large floating platform and a

floating elastic circular plate to plane incident wave for three different cases, i.e., infinite, finite and shallow water depth.

Ohkusu and Namba (2004) presented an analytical approach to predict the bending vibration of a very large floating

structure of thin and elongated rectangular plate configuration, floating on water of shallow depth and under the action

of a monochromatic head wave. Fox and Squire (1990) computed the reflection and transmission coefficients by exactly

solving the mathematical model. They used the complete set of modes to express the solutions with the coefficients
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found by matching through the water column beneath the edge of the ice sheet. This was performed numerically and led

to a large system of equations that became unwieldy at short periods or large depths.

Diffraction of water waves by an elastic floating plate is a hybrid boundary value problem, in which one of the

boundary conditions involves is a high order partial derivative. The Weiner–Hopf technique has many merits in solving

such hybrid boundary value problems. With the aid of the Wiener–Hopf technique, some analytical solutions of the

diffraction of surface waves by an elastic floating plate can be readily constructed, by extending the solution to the

entire complex plane. More than 30 years ago, Evans and Davies (1968) formally solved such a mathematical model of

floating sea ice using the Wiener–Hopf method, which gives the Fourier transform of the solution in each half plane, i.e.

over the region of open water and the ice-covered region. Until now, the solution given by Evans and Davies has been

thought to be unsuitable for actual computation because the required inverse Fourier transform is too difficult to

obtain. Indeed, Evans and Davies had stated this opinion in their article.

Using the method of matched asymptotic expansions, Korobkin (2000) presented the solution of the plane unsteady

problem of the hydroelastic behaviour of a plate floating on a liquid surface within the framework of linear theory.

Balmforth and Craster (1999) studied the reflection and transmission of surface gravity waves incident on ice-covered

ocean analytically. The ice cover is idealized as a plate of elastic material and the flexural motions were described by the

Timoshenko–Mindlin equation. Tkacheva (2001, 2003) studied the hydroelastic behaviour of a floating semi-infinite

plate for surface waves of finite water depth by using the Wiener–Hopf technique and presented a new approach to

determine two unknown constants.

So far, in dealing with the diffraction of surface waves by floating plates the equations describing the flexural motions

of the plate have usually been based on the dynamic theory of thin plates or Euler beam. However, the classical theory

of thin plates in the analysis of dynamic problems has considerable limitations. Inclusion of the effects of transverse

shearing deformation and rotary inertia in the dynamics of Mindlin thick plates leads to improved results for practical

cases. In this paper, the investigation of the wave-induced responses of plane incident waves on an elastic floating plate

is presented on the basis of the dynamical theory of Mindlin thick plates or Timoshenko beams, and the Weiner–Hopf

technique.

2. Governing equations and the solutions

2.1. Differential equations of the fluid motion

The fluid is supposed to be incompressible and inviscid and the flow is assumed to be irrotational. We investigate the

hydroelastic behaviour of a floating plate in waves on a fluid of finite depth a within the linear theory as shown in Fig. 1.

The left edge of the plate is taken as the origin of the Cartesian coordinate system (x,z). The plate has a constant

thickness h and length L. It is supposed that the plate thickness is significantly smaller than the length of the incident

waves. The surface waves are concentrated in a thin layer on the fluid surface and decay exponentially with depth. The

layer thickness is of the order of the wavelength. If the wavelength is comparable with the plate thickness, it is necessary

to take into account the draft of the plate and wave reflection from its end; in this case almost all the energy of the

surface waves will be reflected. The surface waves can penetrate into the plate if their length is significantly greater than

the plate thickness. Therefore, we will neglect the draft of the platform and displace the boundary conditions to the

unperturbed water surface. We assume that incoming waves are propagating along the positive x-direction.

We here consider the one-dimensional form of the dynamical theory of Mindlin thick plates (Hu, 1981), i.e.

Timoshenko beam theory, in which all mechanical quantities in the plate depend only on the coordinate x. We can

therefore obtain the following expressions:

c ¼
qF

qx
; M ¼ �D

q2F

qx2
; Q ¼ C

qw

qx
� c

� �
, (1a,b,c)
h
0

z

L x

−a

y

Fig. 1. Schematic of the fluid–structure interaction problem.
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where c is the angle of rotation, M is the bending moment per unit width, Q is the shear force per unit width, D ¼ Eh3/

12(1�n2) is the modulus of rigidity of the plate per unit width, E and n are Young’s modulus and Poisson’s ratio,

respectively, C ¼ eGh is the shearing rigidity, e ¼ p2/12 is the shear reduced factor, G is the shear modulus of elasticity,

w is the vertical displacement of the upper surface of the fluid (i.e., the displacement of the plate), and F is a generalized

function which satisfies the following differential equation:

w ¼ 1þ
r0J

C

q2

qt2
�

D

C

q2

qx2

� �
F , (2)

where J is the rotational inertia, r0 is the plate density, and t is the time.

The solution of Eq. (2) can be expressed in the following form by Green’s function:

F ¼
C

D

Z L

0

Gðx; x0Þwðx0Þdx0, (3a)

which G(x,x0) is Green’s function of Eq. (2). Its finite representation (Hu, 1989) is

Gðx; x0Þ ¼

sinh gx

g sinh gL
sinh gðL� x0Þ; 0pxox0;

sinh gðL� xÞ

g sinh gL
sinh gx0; x0pxoL;

8>>><
>>>:

(3b)

where g ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðC � r0Jo2Þ=D

p
is the wavenumber of shearing vibration of the plate and o is the circular frequency of the

plate’s transverse oscillation, equal to the frequency of the water waves. Therefore, the wave equation of the plate in the

domain z ¼ 0,0oxoL is written as

D
q4w

qx4
� r0J 1þ

Dh

JC

� �
q4w

qx2qt2
þ r0h

q2w

qt2
þ

r20Jh

C

q4w

qt4
¼ 1þ

r0J

C

q2

qt2
�

D

C

q2

qx2

� �
p, (4a)

where p is the hydrodynamic pressure, g is the acceleration due to gravity and r is the fluid density. The quantities w,

F, p, j contain the time factor e�iot.

The fluid velocity potential j in the fluid region must satisfy Laplace’s equation

r2j ¼ 0 ð�aozo0Þ. (4b)

The boundary conditions on the free surface, the interface between the plate and fluid and the fluid bottom are,

respectively, given by

p ¼ �r
qj
qt
þ gw

� �
ðz ¼ 0; 0oxoLÞ, (5a)

r
qj
qt
þ rgw ¼ 0 ½z ¼ 0; x 2 ð�1; 0ÞUðL;1Þ�, (5b)

qj
qz
¼

qw

qt
ðz ¼ 0; 0oxoLÞ, (5c)

qj
qz
¼ 0 ðz ¼ �aÞ. (5d)

Moreover, the bending moments and shearing forces at the plate edge must be equal to zero

d2F

dx2
¼ 0 ðx ¼ 0;LÞ, (6a)

d

dx
½wðxÞ � F ðxÞ� ¼ 0 ðx ¼ 0;LÞ. (6b)

The following dimensionless variables are introduced:

~j ¼
j

A
ffiffiffiffi
gl

p ; ~x ¼ x=a; ~z ¼ z=a; ~p ¼
p

rgA
; ~k ¼ ka; ~L ¼ L=a; ~l ¼ l=a; ~h ¼ h=a; ~r ¼ r=r0,

where A is the incident wave amplitude, l ¼ g/o2 and a is the fluid depth which is considered as the characteristic length.

In what follows, we will employ these variables in the dimensionless forms and omit the tilde for convenience of writing.
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The total velocity potential j in the flow field can be expressed in the following form:

j ¼ ðjðiÞ þ jðsÞÞe�it, (7)

where j(i) is the incident wave potential and j(s) is the scattering potential. The waves and the vibration of the structure

are of small amplitude and the water depth is constant. Therefore, the dimensionless potential j(i) of the incident wave is

jðiÞ ¼
eikx cosh kðzþ 1Þ

cosh k
,

where k is the incident wavenumber.

The scattered wave potential j(s) in the region, z ¼ 0,0oxoL, satisfies the following boundary condition:

HðxÞ ¼ BðkÞeikx, (8a)

where

BðaÞ ¼ �½bðaÞ þ lbðaÞ�a tanhðaÞ þ bðaÞ,

bðaÞ ¼
rk4

h
1�

k4h4

6p2ð1� nÞ
þ

2h2a2

p2ð1� nÞ

� �
,

bðaÞ ¼ a4 � k4h2
2

p2ð1� nÞ
þ

1

12

� �
a2 � 1�

h4k4

6p2ð1� nÞ

� �
k4,

HðxÞ ¼
q4

qx4
þ k4h2

1

12
þ

2

p2ð1� nÞ

� �
q2

qx2
� k4 1� k4

h4

6p2ð1� nÞ

� ��

þ
rlk4

h
1�

h4k4

6p2ð1� nÞ
�

2h2

p2ð1� nÞ
q2

qx2

� ��
qjðsÞ

qz
� k4

r
h

1�
h4k4

6p2ð1� nÞ
�

2h2

p2ð1� nÞ
q2

qx2

� �
jðsÞ,

and where k0 ¼ (rho2/D)1/4 is the wavenumber of flexural waves in the plate based on the classical theory of thin plates

and k ¼ k0a.
Then, from boundary conditions (5b) and (5c), the scattered potential j(s) in the region z ¼ 0; x 2 ð�1; 0Þ [ ðL;1Þ

satisfies the following boundary condition:

l
qjðsÞ

qz
� jðsÞ ¼ 0. (8b)

2.2. The dispersion relations

The wave propagation in the flow field is studied to determine the guided wave modes. In the free surface region away

from the floating elastic plate, the dispersion relation is

K1ðaÞ ¼ al tanh a� 1 ¼ 0, (9)

where a is the wavenumber. Eq. (9) has two real roots7k and a denumerable set of purely imaginary roots7kn

(n ¼ 1,2,y,N). The influences of the roots on wave propagation become stronger as the distance between the purely

imaginary roots and the origin in the complex plane reduces. These purely imaginary roots satisfy the condition

|kn+1|4|kn| and they are located symmetrically about the real axis in the complex plane.

In the region covered by the floating plate, the dispersion relation is

K2ðaÞ ¼ ½bðaÞ þ lbðaÞ�a tanh a� bðaÞ ¼ 0, (10)

which has two real roots7a0, a denumerable set of purely imaginary roots7an (n ¼ 1,2,y,N) and four complex roots

located symmetrically about the real and imaginary axis, namely, a�1 ¼ �ā�2 ¼ �a�3 ¼ ā�4. K2(a) here is equivalent to
B(a) defined after Eq. (8a). Fox and Squire (1990) have shown that these purely imaginary roots satisfy the condition

|an+1|4|an| and are located symmetrically about the real axis in the complex plane. We will denote the complex root in

the ith quadrants as a�i (i ¼ 1,2,3,4), as shown in Fig. 2.

It is well known that the real roots of the dispersion relations denote propagating waves, the purely imaginary roots

correspond to local excitations evanescent modes and the four complex roots denote decaying waves. It can be shown

that the dispersion relations K1(a) and K2(a) are even.
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Fig. 2. The positions of the roots K1(a) ¼ 0 and K2(a) ¼ 0 in the complex plane.
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2.3. The Wiener–Hopf technique

The problem is solved using the Wiener–Hopf technique (Noble, 1958; Tkacheva, 2001, 2003). The following

functions of the complex variable a are introduced to convert the problem in the spatial domain into a problem in the

wavenumber domain:

Fþða; zÞ ¼
Z 1

L

eiaðx�LÞjðsÞðx; zÞdx, (11a)

F�ða; zÞ ¼
Z 0

�1

eiaxjðsÞðx; zÞdx, (11b)

F1ða; zÞ ¼
Z L

0

eiaxjðsÞðx; zÞdx, (11c)

Fða; zÞ ¼ F�ða; zÞ þ F1ða; zÞ þ eiaLFþða; zÞ. (11d)

It is observed that F+(a,z) and F�(a,z) are defined in the half planes Im a40 and Im ao0, respectively. With the

principle of analytic continuation, these functions can be defined over the entire complex plane.

Now we will study the characteristics of the functions F7(a,z). As x-�N, the scattered potential j(s) is a reflected

wave of the form Re�ikx, a set of local excitations which do not propagate and a set of decaying waves. The least order

local excitation mode corresponds to the root k1. Therefore, F�(a,z) is analytic in the half-plane Im ao|k1| except for

the pole at a ¼ k. As x-N, the scattered potential j(s) is a transmitted wave of the form Te�ikx, a set of local

excitations and a set of decaying waves. Therefore, the function F+(a,z) is analytical in the half-plane Im a4�|k1|
except for the pole at a ¼ �k.

The function F(a,z) is the Fourier transform of the function j(x,z) with respect to the space variable x and it must

satisfy the equation qF/qz2�a2F ¼ 0. The general solution of the equation with the boundary condition (5d) on the

seabed is given by

Fða; zÞ ¼ Y ðaÞ
cosh½aðzþ 1Þ�

coshðaÞ
. (12)

We will apply the Fourier transform to the left-hand side of condition (8a), which can be denoted by J7(a) and J1(a)
as follows:

JðaÞ ¼ J�ðaÞ þ J1ðaÞ þ eiaLJþðaÞ, (13)

where

J�ðaÞ ¼
Z 0

�1

HðxÞeiax dx; JþðaÞ ¼
Z 1

L

HðxÞeiaðx�LÞ dx,

J1ðaÞ ¼
Z L

0

HðxÞeiax dx ¼

Z L

0

BðkÞeiaxeikx dx ¼
BðkÞ½eiðaþkÞL � 1�

iðaþ kÞ
.

Similarly, applying Fourier transform to the left-hand side of condition (8b), we will denote these integrands by

X7(a) and X1(a) as follows:

X ðaÞ ¼ X�ðaÞ þ X 1ðaÞ þ eiaLXþðaÞ, (14)



ARTICLE IN PRESS
C. Zhao et al. / Journal of Fluids and Structures 24 (2008) 231–249236
where

X�ðaÞ ¼
Z 0

�1

l
qjðsÞ

qz
� jðsÞ

� �
eiax dx; X 1ðaÞ ¼

Z L

0

l
qjðsÞ

qz
� jðsÞ

� �
eiax dx,

XþðaÞ ¼
Z 1

L

l
qjðsÞ

qz
� jðsÞ

� �
eiaðx�LÞ dx.

From the boundary condition (8b), we have the relation X�(a) ¼ X+(a) ¼ 0 and obtain

X ðaÞ ¼ X 1ðaÞ. (15)

According to Eq. (13), we have

JðaÞ ¼
Z 1
�1

HðxÞeiax dx. (16)

After some algebra, the functions are found to satisfy the following relation:

JðaÞ ¼ ½bðaÞ þ lbðaÞ�aY ðaÞ tanhðaÞ � bðaÞY ðaÞ ¼ Y ðaÞK2ðaÞ. (17)

Similarly, we have

X ðaÞ ¼ X 1ðaÞ ¼ Y ðaÞK1ðaÞ. (18)

From Eqs. (13) and (17), we obtain

J�ðaÞ þ J1ðaÞ þ eiaLJþðaÞ ¼ Y ðaÞK2ðaÞ. (19)

Substituting Eq. (18) into Eq. (19) and eliminating Y(a), we obtain the following equation:

J�ðaÞ þ
BðkÞ½eiðaþkÞL � 1�

iðaþ kÞ
þ eiaLJþðaÞ ¼ X 1ðaÞKðaÞ, (20)

where K(a) ¼ K2(a)/K1(a).
We factorize the function K(a) in the strip �|k1|oIm ao|k1|

KðaÞ ¼ KþðaÞK�ðaÞ, (21)

where the functions K7(a) and F7(a,z) are regular in the same domain. The points7k and7a0 are the zeros and poles,

respectively, on the real axis for the function K(a). Therefore, it can be shown that S+ is the upper half-plane

Im a4�|k1| without the points �a0 and �k and that S� is the lower half-plane Im ao|k1| without the points a0 and k.

We now introduce the function

gðaÞ ¼
KðaÞða2 � k2

Þ

ða2 � a20Þða
2 � a2

�1Þða
2 � a2

�2Þ
. (22)

It is observed that g(a) is analytic in the strip �|k1|oIm ao|k1| after eliminating the zeros and poles of the function

K(a). Moreover, it is obvious that on the real axis the function g(a) has no zeros, has boundaries, and tends to unity at

infinity. The function g(a) can be factorized as follows:

gðaÞ ¼ gþðaÞg�ðaÞ; g�ðaÞ ¼ exp �
1

2pi

Z 1�is
�1�is

ln gðxÞ

x� a
dx

� �
ðsojk1jÞ. (23)

Following the theorem of Noble (1958), the function g(a) can also be expressed as an infinite product

g�ðaÞ ¼
ffiffiffiffiffiffiffiffi
gð0Þ

p Y1
n¼1

1�
a
an

� �
expð�ia=an � ia=knÞ= 1�

a
kn

� �� �
. (24)

We define the functions K7(a) as follows:

K�ðaÞ ¼
ða� a0Þða� a�1Þða� a�2Þ

a� k
g�ðaÞ. (25)

It can be shown that from the above expressions the functions K7(a) satisfy the relation K7(a) ¼ K�(�a). We

multiply both sides of Eq. (20) by e�iaL[K7(a)]�1 and rearrange it in the following form:

J�ðaÞe�iaL

KþðaÞ
þ

BðkÞðeikL � e�iaLÞ

iðaþ kÞKþðaÞ
þ

JþðaÞ
KþðaÞ

¼ X 1ðaÞK�ðaÞe�iaL (26a)
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or

JþðaÞ
KþðaÞ

þ
BðkÞeikL

iðaþ kÞKþðaÞ
þUþðaÞ � VþðaÞ ¼ X 1ðaÞK�ðaÞe�iaL �U�ðaÞ þ V�ðaÞ, (26b)

where

U�ðaÞ ¼ �
1

2pi

Z 1�is
�1�is

e�izLJ�ðzÞdz
KþðzÞðz� aÞ

; V�ðaÞ ¼ �
BðkÞ

2p

Z 1�is
�1�is

e�izL dz
KþðzÞðzþ kÞðz� aÞ

ðsos0Þ,

with s0 ¼ min(|k1|,|a�1|).
The left-hand side of Eq. (26b) is analytic in region S+, while the right-hand side functions are analytic in region S�.

Applying the principle of analytic continuation, we define the function over the entire complex plane. According to

Liouville’s theorem, the left-hand side of Eq. (26b) must be a polynomial, in which the degree of the polynomial can be

determined by the behaviour of the functions as |a|-N. From Eqs. (12) and (13), we can see that as |a|-N the

function J�(a) is of order no higher than Oðjajlþ3Þ(lo1) and the function X+(a) is of order no higher than Oðjajl�1Þ. As

|a|-N, g7(a) tend to unity and the functions K7(a) are of the order Oðjaj2Þ. Thus, we obtain the following equation:

JþðaÞ
KþðaÞ

þ
BðkÞeikL

iðaþ kÞKþðaÞ
þUþðaÞ � VþðaÞ ¼ a1aþ b1. (27)

Multiplying both sides of Eq. (20) by [K�(a)]
�1, we obtain the following equation:

J�ðaÞ
K�ðaÞ

þ R�ðaÞ � S�ðaÞ �
B

iðaþ kÞ

1

K�ðaÞ
�

1

K�ð�kÞ

� �
¼ X 1ðaÞKþðaÞ � RþðaÞ þ SþðaÞ þ

BðkÞ

iðaþ kÞKþðkÞ
, (28)

where

RþðaÞ þ R�ðaÞ ¼
eiaLJþðaÞ

K�ðaÞ
; R�ðaÞ ¼ � 1

2pi

R1�is
�1�is

eizLJþðzÞ
K�ðzÞðz� aÞ

dz ðsos0Þ;

SþðaÞ þ S�ðaÞ ¼ �
BðkÞeiðaþkÞL

iðaþ kÞK�ðaÞ
; S�ðaÞ ¼ �

BðkÞ
2p

R1�is
�1�is

eiðzþkÞLJþðzÞ dz
K�ðzÞðzþ kÞðz� aÞ

ðsos0Þ:

Similarly, from Eq. (28) we obtain

J�ðaÞ
K�ðaÞ

þ R�ðaÞ � S�ðaÞ �
BðkÞ

iðaþ kÞ

1

K�ðaÞ
�

1

K�ð�kÞ

� �
¼ a2aþ b2, (29)

where a1, b1, a2, b2 are unknown constants.

In the spatial wavenumber domain, we introduce the new unknown functions

CþðaÞ ¼ JþðaÞ þ
BðkÞeikL

iðaþ kÞ
, (30a)

Cn

�ðaÞ ¼ J�ðaÞ �
BðkÞ

iðaþ kÞ
, (30b)

where the superscript star is used to indicate that apart from the pole at a ¼ �k the functions Cn

�ðaÞ and J�(a) are all
analytic in the domain S�. Substituting Eq. (30) into Eqs. (27) and (29), we obtain

CþðaÞ
KþðaÞ

þ
1

2pi

Z 1�is
�1�is

e�izLCn

�ðzÞdz
KþðzÞðz� aÞ

¼ a1aþ b1 ðsos0Þ, (31a)

C��ðaÞ
K�ðaÞ

þ
BðkÞ

iðaþ kÞK�ð�kÞ
�

1

2pi

Z 1þis
�1þis

eizLCþðzÞ
K�ðzÞðz� aÞ

dz ¼ a2aþ b2 ðsos0Þ. (31b)
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By means of the boundary conditions (6a) and (6b), we can obtain the expressions for the four unknown constants a1,

b1, a2 and b2 (see Appendix A):

a1 ¼
X4
s¼1

wsbðwsÞ½wsN1ðwsÞA22 �N2ðwsÞA12�

b0ðwsÞK�ðwsÞðA11A22 � A12A21Þ

1

2pi

Z
C�

e�iaLCn

�ðaÞda
KþðaÞð�aþ wsÞ

þ
bðigÞðigA22 � qA12Þ

2bðigÞðA11A22 � A12A21Þ

1

2pi

Z
C�

e�iaLCn

�ðaÞ
KþðaÞK�ðigÞð�aþ igÞ

da

þ
bðigÞðigA22 þ qA12Þ

2bðigÞðA11A22 � A12A21Þ

1

2pi

Z
C�

e�iaLCn

�ðaÞ
KþðaÞK�ð�igÞðaþ igÞ

da, ð32aÞ

b1 ¼
X4
s¼1

wsbðwsÞ½wsN1ðwsÞA21 �N2ðwsÞA11Þ�

b0ðwsÞK�ðwsÞðA12A21 � A11A22Þ

1

2pi

Z
C�

e�iaLCn

�ðaÞda
KþðaÞð�aþ wsÞ

þ
bðigÞðigA21 � qA11Þ

2bðigÞðA12A21 � A11A22Þ

1

2pi

Z
C�

e�iaLCn

�ðaÞ
KþðaÞ

1

K�ðigÞð�aþ igÞ
da

þ
bðigÞðigA21 þ qA11Þ

2bðigÞðA12A21 � A11A22Þ

1

2pi

Z
C�

e�iaLCn

�ðaÞ
KþðaÞ

1

K�ð�igÞðaþ igÞ
da. ð32bÞ

a2 ¼
P22Q1 � P12Q2

ðP11P22 � P12P21Þ
þ
X4
s¼1

wsbðwsÞ½N2ðwsÞP12 � wsN1ðwsÞP22�

b0ðwsÞKþðwsÞðP11P22 � P12P21Þ

1

2pi

Z
Cþ

eiaLCþðaÞda
K�ðaÞða� wsÞ

þ
bðigÞðqP12 � igP22Þ

2bðigÞðP11P22 � P12P21Þ

1

2pi

Z
Cþ

eiaLCþðaÞ
K�ðaÞKþðigÞða� igÞ

da

þ
bðigÞðqP12 þ igP22Þ

2bðigÞðP11P22 � P12P21Þ

1

2pi

Z
Cþ

eiaLCþðaÞ
K�ðaÞKþð�igÞðaþ igÞ

da, ð33aÞ

b2 ¼
P21Q1 � P11Q2

ðP12P21 � P11P22Þ
þ
X4
s¼1

wsbðwsÞ½N2ðwsÞP11 � wsN1ðwsÞP21�

b0ðwsÞKþðwsÞðP12P21 � P11P22Þ

1

2pi

Z
Cþ

eiaLCþðaÞda
K�ðaÞða� wsÞ

þ
bðigÞðqP11 � igP21Þ

2bðigÞðP12P21 � P11P22Þ

1

2pi

Z
Cþ

eiaLCþðaÞ
K�ðaÞKþðigÞða� igÞ

da

þ
bðigÞðqP11 þ igP21Þ

2bðigÞðP12P21 � P11P22Þ

1

2pi

Z
Cþ

eiaLCþðaÞ
K�ðaÞKþð�igÞðaþ igÞ

da. ð33bÞ

Substituting Eqs. (32a), (32b), (33a) and (33b) for the coefficients a1, b1, a2 and b2 into Eqs. (31a) and (31b) and

deforming the contours to have the same integration contour in each equation, we can obtain the following system of

integral equations:

CþðaÞ
KþðaÞ

þ
1

2pi

Z
C�

e�izLCn

�ðzÞdz
KþðzÞðz� aÞ

�
X4
s¼1

wsbðwsÞ½wsN1ðwsÞðA22a� A21Þ �N2ðwsÞðA12a� A11Þ�

b0ðwsÞK�ðwsÞðA11A22 � A12A21Þ

1

2pi

Z
C�

e�izLCn

�ðzÞdz
KþðzÞð�zþ wsÞ

�
bðigÞ½igðA22a� A21Þ � qðA12a� A11Þ�

2bðigÞðA11A22 � A12A21Þ

1

2pi

Z
C�

e�izLCn

�ðzÞ
KþðzÞK�ðigÞð�zþ igÞ

dz, ð34aÞ

C��ðaÞ
K�ðaÞ

�
1

2pi

Z
Cþ

eizLCþðzÞdz
K�ðzÞðz� aÞ

�
X4
s¼1

wsbðwsÞ½N2ðwsÞðP12a� P11Þ � wsN1ðwsÞðP22a� P21Þ�

b0ðwsÞKþðwsÞðP11P22 � P12P21Þ

1

2pi

Z
Cþ

eizLCþðzÞdz
K�ðzÞðz� wsÞ
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�
bðigÞ½qðP12a� P11Þ � igðP22a� P21Þ�

2bðigÞðP11P22 � P12P21Þ

1

2pi

Z
Cþ

eizLCþðzÞ
K�ðzÞKþðigÞðz� igÞ

dz

�
bðigÞ½qðP12a� P11Þ þ igðP22a� P21Þ�

2bðigÞðP11P22 � P12P21Þ

1

2pi

Z
Cþ

eizLCþðzÞ
K�ðzÞKþð�igÞðzþ igÞ

dz

¼
Q1ðP22a� P21Þ þQ2ðP11 � P12aÞ

P11P22 � P12P21
�

BðkÞ

iðaþ kÞK�ð�kÞ
. ð34bÞ

In order to numerically solve the above system of integral equations, we introduce the following new unknown

functions:

xðaÞ ¼
CþðaÞ
KþðaÞ

; ZðaÞ ¼
Cn

�ðaÞ
K�ðaÞ

. (35a,b)

Substituting Eqs. (35a) and (35b) into the above system of equations, we will evaluate the integrals using the residue

calculus technique. After substituting a ¼ aj (j ¼ �2,�1,0,1,y) into the first equation and a ¼ �aj (j ¼ �2,�1,0,1,y)

into the second equation, we close the integration contour in the lower half-plane in the first equation and in the upper

half-plane in the second equation. Applying the residue calculus technique, the system of integral equations is reduced

to the infinite system of algebraic equations

xj þ
X1

m¼�2

Zm

eiamLK2
þðamÞK1ðamÞ

K 02ð�amÞ

1

am þ aj

�
þ
X4
s¼1

wsbðwsÞ½wsN1ðwsÞðA22aj � A21Þ �N2ðwsÞðA12aj � A11Þ�

b0ðwsÞK�ðwsÞðA11A22 � A12A21Þðam þ wsÞ

þ
bðigÞ½igðA22aj � A21Þ � qðA12aj � A11Þ�

2bðigÞðA11A22 � A12A21ÞK�ðigÞðam þ igÞ
þ

bðigÞ½igðA22aj � A21Þ þ qðA12aj � A11Þ�

2bðigÞðA11A22 � A12A21ÞK�ð�igÞð�am þ igÞ

�
¼ 0, ð36aÞ
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Fig. 3. Amplitude of the displacement over the plate for different dimensionless wavenumbers. (a) k ¼ 0.8044, (b) k ¼ 2.2216, and

(c) k ¼ 9.0434.
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Zj þ
X1

m¼�2

xm

eiamLK2
þðamÞK1ðamÞ

K 02ðamÞ
�

1

am þ aj

�
�
X4
s¼1

wsbðwsÞ½�N2ðwsÞðP12aj þ P11Þ þ wsN1ðwsÞðP22aj þ P21Þ�

b0ðwsÞKþðwsÞðP11P22 � P12P21Þðam � wsÞ

�
bðigÞ½�qðP12aj þ P11Þ þ igðP22aj þ P21Þ�

2bðigÞðP11P22 � P12P21ÞKþðigÞðam � igÞ
�

bðigÞ½�qðP12aj þ P11Þ � igðP22aj þ P21Þ�

2bðigÞðP11P22 � P12P21ÞKþð�igÞðam þ igÞ

�

¼
�Q1ðP22aj þ P21Þ þQ2ðP11 þ P12ajÞ

P11P22 � P12P21
�

BðkÞ

iðk � ajÞK�ð�kÞ
, ð36bÞ

where xj ¼ x(aj), Zj ¼ Z(�aj). Therefore, the discrete values of the unknown functions xj ¼ x(aj), Zj ¼ Z(�aj) can be

determined by solving Eqs. (36). It can be shown that the system (36) satisfies the reduction conditions (Kantorovich

and Akilov, 1977) and the solution of the finite reduced system converges to the solution of the initial system when the

order of the finite system tends to infinity.
3. Wave-induced response, reflection and transmission coefficients

We will calculate the deflection of the floating plate. According to Eqs. (13), (20), (30a) and (30b), we have

Y ðaÞ ¼
1

K2ðaÞ
½CþðaÞeiaL þCn

�ðaÞ�. (37)

Thus, from Eqs. (12), (37), we obtain the following expression for the scattered potential j(s) by Fourier inversion:

jðsÞðx; zÞ ¼
1

2p

Z 1
�1

e�iaðx�LÞ cosh aðzþ 1ÞCþðaÞda
K2ðaÞ coshðaÞ

þ
1

2p

Z 1
�1

e�iax cosh aðzþ 1ÞC��ðaÞda
K2ðaÞ coshðaÞ

. (38)
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Fig. 4. Amplitude of the bending moment over the plate for different dimensionless wavenumbers. (a) k ¼ 0.8044, (b) k ¼ 2.2216, and

(c) k ¼ 9.0434.
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After derivation of Eq. (38) with respect to z ¼ 0, we obtain

q
qz

jðsÞðx; 0Þ ¼ i
X1

m¼�2

am tanhðamÞ

K 02ðamÞ
½e�iamðx�LÞCþðamÞ þ eiamxC��ð�amÞ� � eikx. (39)

From the boundary condition (3c) and Eq. (39), we obtain the following expression for the plate deflection:

wðxÞ ¼ �
X1

m¼�2

am tanhðamÞKþðamÞ

K 02ðamÞ
½e�iamðx�LÞxm þ eiamxZm�. (40)

It can be shown in Eq. (40) that the value of xj determines the complex amplitudes of the elastic waves travelling from

the right-hand edge of the plate and the value of Zj determines the amplitudes of elastic waves travelling from the left-

hand edge.

According to Eq. (40) and (3a), we have

F ðxÞ ¼
X1

m¼�2

qam tanhðamÞKþðamÞN1ðamÞ

K 02ðamÞ
½e�iamðx�LÞxm þ eiamxZm�. (41)

From Eqs. (1b) and (41), the dimensionless bending moment |M(x)| is given in the following form:

MðxÞ
		 		 ¼ D

rgL0 da2

X1
m¼�2

qa3m tanhðamÞKþðamÞN1ðamÞ

K 02ðamÞ
½e�iamðx�LÞxm þ eiamxZm�

					
					. (42)

Next, we will calculate the reflection and transmission coefficients. For the reflected wave, as x tends to �N,

j(s)(x,0) ¼ Re�ikx. Thus the modulus |R| of the coefficient of exp(�ikx) is the reflection coefficient. We take the

representation for the scattered potential j(s) in the form of Eq. (A.22) and determine the value of R by evaluating the
w
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Fig. 5. Amplitude of the displacement over the plate for different dimensionless thicknesses. (a) k ¼ 0.8044, (b) k ¼ 2.2216, and

(c) k ¼ 9.0434.
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residue at the point a ¼ k, namely

R ¼ i
1

KþðkÞK
0
1ðkÞ

a2k þ b2 �
BðkÞ

2ikKþðkÞ
þ

1

2pi

Z 1�is
�1�is

eizLCþðzÞdz
K�ðzÞðz� kÞ

� �� �
. (43)

For the transmitted wave, as x tends to N, jðx; 0Þ ¼ Teikx. We take the representation for j(s) in the form of Eq.

(A.3) and determine the value of T by evaluating the residue in (A.3) at the point a ¼ �k, namely

T ¼ 1þ
ie�ikL

K�ð�kÞK 01ð�kÞ
b1 � a1k �

1

2pi

Z 1þis
�1þis

e�izLCn

�ðzÞdz
KþðkÞðzþ kÞ

� �
. (44)

4. Numerical results

For the purpose of checking the validity of the present method, numerical calculations are performed for a physical

model, which has been investigated experimentally by Wu et al. (1995). The parameters of the model are: Young’s

modulus E ¼ 103MPa, Poisson’s ratio n ¼ 0.3, the plate length L ¼ 10m, the plate thickness h ¼ 38mm, the draft

d ¼ 8.36mm, the fluid density r ¼ 1000 kg/m3, the water depth a ¼ 1.1m, and the density ratio between the fluid and

plate r/r0 ¼ 4.5455. The periods of the incident wave are equal to 2.875, 1.429 and 0.7 s, respectively. Corresponding to

the incident-wave periods, the dimensionless wave numbers of the incident wave are k ¼ 0.8044, 2.2216, 9.0434,

respectively.

For the nondimensional plate thickness h/a ¼ 0.0345, the calculated amplitudes of both the plate deflection |w(x)|

and bending moments |M(x)| by using the present method are in good agreement with the results by Tkacheva (2003)

obtained based on Weiner–Hopf technique and classical dynamics theory of thin plates, as shown in Figs. 3 and 4. It
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Fig. 6. Amplitude of the bending moment over the plate for different dimensionless thicknesses. (a) k ¼ 0.8044, (b) k ¼ 2.2216, and

(c) k ¼ 9.0434.
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can be shown that the range of validity of the present method is such that it can should be applicable for predicting the

dynamic behaviour of the system under a wider range of parameters, such as are discussed below. Moreover, it may be

noted that good agreement between the experimental data and the results obtained by this method is also achieved for

long incident waves.

By means of the present method, we calculate the amplitudes of both the plate deflection |w(x)| and the bending

moments |M(x)| for different dimensionless thicknesses of the plate h/a ¼ 0.0345, 0.0682, 0.0909, as shown in Figs. 5

and 6. The other parameters of the model are the same as above. Fig. 5 show the dimensionless amplitudes of the plate

deflection for k ¼ 0.8044, 2.2216, 9.0434. Fig. 6 show the dimensionless amplitudes of the plate bending moments for

the same wavenumbers.

As can be seen in Figs. 5 and 6, the plate deflection and bending moment vary smoothly over the regions far

from the plate edges in the case of the long incident wave (k ¼ 0.8044), and the deflection amplitudes reduce

while the bending moment amplitudes increase as the plate thickness increases. For k ¼ 2.2216, the

deflection amplitudes also decrease as the plate thickness increases. However, for k ¼ 2.2216, the variations of the

deflection amplitude and the bending moment are highly complicated. Moreover, in the vicinity of the plate edge,

the variations of the deflection amplitudes and the bending moments are very complex for all of the incident waves

considered.

5. Conclusion

In this paper, based on the dynamical theories of water waves and Timoshenko–Mindlin thick plates, the diffraction

of surface waves by a floating elastic plate is analysed by using the Wiener–Hopf technique. The calculated results

obtained by the present method are in good agreement with the results from the literature (Wu et al., 1995; Tkacheva,

2003). Therefore, the validity of the present method is confirmed, and it can be applied to a wider range of practical

cases.

This is relevant because it is known that the results obtained from Mindlin thick plate theory are much closer to

physical data than results from the classical theory of thin plates or Euler beams assuming small shear effects. In the

context of the development of research in ocean engineering, where composite materials are being widely considered for

floating platforms and artificial land, etc., it is necessary to employ the theory of Mindlin thick plates to accurately

depict the dynamic behaviour of this kind of very large floating structures, and the effects of the transverse shearing and

rotary inertia must be included in the theory.
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Appendix A

We will now seek the unknown constants a1, b1. From Eqs. (27) and (26b), we obtain

X 1ðaÞK�ðaÞe�iaL þ V�ðaÞ �U�ðaÞ ¼ a1aþ b1. (A.1)

Substituting the expressions for V�(a), U�(a) into Eq. (A.1), we have

X 1ðaÞ ¼
eiaL

K�ðaÞ
a1aþ b1 �

1

2pi

Z 1þis
�1þis

e�izLCn

�ðzÞdz
KþðzÞðz� aÞ

� �
. (A.2)

Thus, according to Eqs. (12), (18) and (A.2), we obtain the following expression for the scattered potential by Fourier

inversion:

jðsÞðx; zÞ ¼
1

2p

Z 1
�1

e�iaðx�LÞ cosh½aðzþ 1Þ�

K�ðaÞK1ðaÞ coshðaÞ
a1aþ b1 �

1

2pi

Z 1þis
�1þis

e�izLCn

�ðzÞdz
KþðzÞðz� aÞ

� �
da, (A.3)

from which we can obtain

qjðsÞ

qz
ðx; 0Þ ¼

1

2p

Z 1
�1

ae�iaðx�LÞ tanhðaÞKþðaÞ
K2ðaÞ

a1aþ b1 �
1

2pi

Z 1þis
�1þis

e�izLCn

�ðzÞdz
KþðzÞðz� aÞ

� �
da. (A.4)
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For the outer integral, the contour of the integral must lie completely within the intersection of the domains S+ and

S�. Hence, the integration contour is chosen on the real axis by passing around the points a0 and k from below and the

points �a0 and �k from above, as shown in Fig. A1.

For the inner integral, the integral function can be defined by means of analytic continuation as a function of a over

the entire complex plane. The integration contour is closed in the lower half-plane Im aos and this integral can be

evaluated by using the residue calculus technique. The function K+(z) has zeros at the points �aj (j ¼ �2,�1,0,y) and

poles at the points �k, �kj (j ¼ 1,2,3,y). In the integral, the pole of the function Cn

�ðzÞ at the point z ¼ �k can be

annihilated by the pole of the function K+(z). Moreover, the points z ¼ �aj (j ¼ �2,�1,0,y) and z ¼ a are the first-

order poles of this integrand. Therefore, we have

1

2pi

Z 1þis
�1þis

e�izLCn

�ðzÞdz
KþðzÞðz� aÞ

¼ �
e�iaLCn

�ðaÞ
KþðaÞ

þ
X1
j¼�2

eiaj LCn

�ð�ajÞ

K 0þð�ajÞðaj þ aÞ
, (A.5)

where K 0þð�ajÞ is the derivative of the function K+(�aj) at the points �aj (j ¼ �2,�1,0,y). Substituting Eq. (A.5) into

Eq. (A.4), we have

qjðsÞ

qz
ðx; 0Þ ¼

1

2p

Z 1
�1

ae�iaðx�LÞ tanhðaÞKþðaÞ
K2ðaÞ

ða1aþ b1Þdaþ
1

2p

Z 1
�1

ae�iax tanhðaÞCn

�ðaÞ
K2ðaÞ

da

�
1

2p

X1
j¼�2

eiajLCn

�ð�ajÞ

K 0þð�ajÞ

Z 1
�1

ae�iaðx�LÞ tanhðaÞKþðaÞ
K2ðaÞðaj þ aÞ

da. ðA:6Þ

For the second integral of Eq. (A.6), the integration contour is closed by a semi-circle of large radius in the lower-half

plane, as shown in Fig. A1, and the following result is obtained by using the residue calculus technique:

1

2p

Z 1
�1

ae�iax tanhðaÞCn

�ðaÞ
K2ðaÞ

da ¼ �eikx � i
X1

m¼�2

am tanhðamÞe
iamxCn

�ð�amÞ

K 02ð�amÞ
. (A.7)

For the first and third integral of Eq. (A.6), the integration contour is closed in the upper-half plane, and it passes

around the points �k, �a0 from above and the points k, a0 from below along the real axis, as shown in Fig. A1.

Moreover, by the residue calculus technique, we can obtain the expression for qjs/qz (x,0):

qjðsÞ

qz
ðx; 0Þ ¼ i

X1
m¼�2

am tanhðamÞKþðamÞ

K 02ðamÞ
ða1aþ b1Þe

�iamðx�LÞ � i
X1

m¼�2

am tanhðamÞe
iamxCn

�ð�amÞ

K 02ð�amÞ

� i
X1

m¼�2

am tanhðamÞKþðamÞe
�iamðx�LÞ

K 02ðamÞ

X1
j¼�2

eiajLCn

�ð�ajÞ

K 0þð�ajÞðaj þ amÞ
� eikx. ðA:8Þ

From Eqs. (7) and (A.8), we obtain

qj
qz
ðx; 0Þ ¼ i

X1
m¼�2

am tanhðamÞKþðamÞ

K 02ðamÞ
ða1aþ b1Þe

�iamðx�LÞ � i
X1

m¼�2

am tanhðamÞe
iamxCn

�ð�amÞ

K 02ð�amÞ
. (A.9)
−∞ ∞

Im �

Re�−k k−� �0 0
0

Fig. A1. Schematic of the integration contour for the outer integral in Eq. (A.4).
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Taking into account Eqs. (3a), (5c) and (A.9), we obtain

wðxÞ ¼ i
qj
qz
ðx; 0Þ ¼ �

X1
m¼�2

am tanhðamÞKþðamÞ

K 02ðamÞ
a1am þ b1 �

X1
j¼�2

eiajLCn

�ð�ajÞ

K 0þð�ajÞðaj þ amÞ

" #
e�iamðx�LÞ

þ
X1

m¼�2

am tanhðamÞe
iamxCn

�ð�amÞ

K 02ð�amÞ
, ðA:10Þ

F ðxÞ ¼ �
X1

m¼�2

am tanhðamÞKþðamÞ

K 02ðamÞ
a1am þ b1 �

X1
j¼�2

eiaj LCn

�ð�ajÞ

K 0þð�ajÞðaj þ amÞ

" #
Ca2e�iamðx�LÞ

Dðg2 þ a2mÞ

þ
X1

m¼�2

am tanhðamÞCn

�ð�amÞ

K 02ð�amÞ

Ca2eiamx

Dðg2 þ a2mÞ
. ðA:11Þ

According to the boundary conditions (6a) and (6b) at x ¼ L, we have

X1
m¼�2

a3m tanhðamÞKþðamÞN1ðamÞ

K 02ðamÞ
a1am þ b1 �

X1
j¼�2

eiajLCn

�ð�ajÞ

K 0þð�ajÞðaj þ amÞ

" #

�
X1

m¼�2

a3m tanhðamÞCn

�ð�amÞe
iamLN1ðamÞ

K 02ð�amÞ
¼ 0, ðA:12Þ

X1
m¼�2

a2m tanhðamÞKþðamÞN2ðamÞ

K 02ðamÞ
a1am þ b1 �

X1
j¼�2

eiajLCn

�ð�ajÞ

K 0þð�ajÞðaj þ amÞ

" #

þ
X1

m¼�2

a2m tanhðamÞCn

�ð�amÞe
iamLN2ðamÞ

K 02ð�amÞ
¼ 0, ðA:13Þ

where N1(a) ¼ 1/(a2+g2), N2(a) ¼ q/(g2+a2)�1, q ¼ Ca2/D.

From the dispersion relations (9) and (10), we have

an
m tanhðamÞ ¼ �

an�1
m bðamÞK1ðamÞ

bðamÞ
ðn ¼ 2; 3Þ. (A.14)

Substituting Eq. (A.14) into Eqs. (A.12) and (A.13), we obtain

X1
m¼�2

a2mbðamÞK1ðamÞKþðamÞN1ðamÞ

bðamÞK
0
2ðamÞ

a1am þ b1 �
X1
j¼�2

eiajLCn

�ð�ajÞ

K 0þð�ajÞðaj þ amÞ

" #

�
X1

m¼�2

a2mbðamÞK1ðamÞCn

�ð�amÞe
iamLN1ðamÞ

bðamÞK
0
2ð�amÞ

¼ 0, ðA:15Þ

X1
m¼�2

ambðamÞK1ðamÞKþðamÞN2ðamÞ

bðamÞK
0
2ðamÞ

a1am þ b1 �
X1
j¼�2

eiajLCn

�ð�ajÞ

K 0þð�ajÞðaj þ amÞ

" #

þ
X1

m¼�2

ambðamÞK1ðamÞCn

�ð�amÞe
iamLN2ðamÞ

bðamÞK
0
2ð�amÞ

¼ 0. ðA:16Þ

The sums of the infinite series in the above equations are replaced by integrals. The integration contours C7 are

chosen along the real axis from �N to N within the intersection of the domain S+ and S�. The subscripts 7 of

the contour C7 mean that the integration contour lies above and below the origin as shown in Figs. A2 and A3.

C+ is used to indicate that the integration contour passes around the points �k, �a0, ig, w3, w2, w1 from above and the

points k, a0 from below along the real axis. Moreover, C� is used to indicate that the integration contour passes around

the points �k, �a0 from above and the points k, a0, ig, w1, w3, w4 from below. The points w1, w2, w3, w4 are the positive real
root, the positive imaginary root, the negative real root and the negative imaginary root of the equation b(a) ¼ 0,

respectively.

The integration contour C+ is chosen and closed in the upper-half plane for the first summation over m in

Eqs. (A.15) and (A.16). Similarly, the integration contour C� is chosen and closed in the lower-half plane for the second
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Fig. A2. Schematic of the integration contour C+.

 

Imα

Reαk− k0
α0

α− 0

iγ−

2
χ

3
χ

4
χ 1

χ

iγ

Fig. A3. Schematic of the integration contour C�.
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summation. Therefore, we obtain

1

2pi

Z
Cþ

a2bðaÞN1ðaÞ
bðaÞK�ðaÞ

ða1aþ b1Þdaþ
1

2pi

Z
C�

e�iaLa2bðaÞCn

�ðaÞN1ðaÞda
bðaÞKðaÞ

�
1

2pi

X1
j¼�2

eiajLCn

�ð�ajÞ

K 0þð�ajÞ

Z
Cþ

a2bðaÞN1ðaÞda
bðaÞK�ðaÞðaj þ aÞ

¼ 0, ðA:17Þ

1

2pi

Z
Cþ

abðaÞN2ðaÞ
bðaÞK�ðaÞ

ða1aþ b1Þdaþ
1

2pi

Z
C�

ae�iaLbðaÞCn

�ðaÞN2ðaÞda
bðaÞKðaÞ

�
1

2pi

X1
j¼�2

eiajLCn

�ð�ajÞ

K 0þð�ajÞ

Z
Cþ

abðaÞN2ðaÞda
bðaÞK�ðaÞðaj þ aÞ

¼ 0. ðA:18Þ

Using the residue calculus technique, we can obtain the following system of equations with respect to the unknown

constants a1 and b1:

A11a1 þ A12b1 ¼
X4
s¼1

w2s bðwsÞN1ðwsÞ

b0ðwsÞK�ðwsÞ

1

2pi

Z
C�

e�iaLCn

�ðaÞda
KþðaÞð�aþ wsÞ

þ
igbðigÞ
2bðigÞ

1

2pi

Z
C�

e�iaLCn

�ðaÞ
KþðaÞ

1

K�ðigÞð�aþ igÞ
þ

1

K�ð�igÞðaþ igÞ

� �
da, ðA:19Þ

A21a1 þ A22b1 ¼
X4
s¼1

wsbðwsÞN2ðwsÞ

b0ðwsÞK�ðwsÞ

1

2pi

Z
C�

e�iaLCn

�ðaÞ da
KþðaÞð�aþ wsÞ

þ
qbðigÞ
2bðigÞ

1

2pi

Z
C�

e�iaLCn

�ðaÞ
KþðaÞ

1

K�ðigÞð�aþ igÞ
�

1

K�ð�igÞðaþ igÞ

� �
da, ðA:20Þ

where

A11 ¼
1

2pi

Z
Cþ

a3bðaÞN1ðaÞ
bðaÞK�ðaÞ

da; A12 ¼
1

2pi

Z
Cþ

a2bðaÞN1ðaÞ
bðaÞK�ðaÞ

da,

A21 ¼
1

2pi

Z
Cþ

a2bðaÞN2ðaÞ
bðaÞK�ðaÞ

da; A22 ¼
1

2pi

Z
Cþ

abðaÞN2ðaÞ
bðaÞK�ðaÞ

da.

We now turn to the other two constants, a2 and b2. From Eqs. (28) and (29), we obtain

X 1ðaÞKþðaÞ � RþðaÞ þ SþðaÞ þ
BðkÞ

iðaþ kÞKþðkÞ
¼ a2aþ b2. (A.21)
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Following the same method as used to obtain expression (A.3), we can get the following expression for the diffracted

potential j(s)(x,z) by Fourier inversion:

jðsÞðx; zÞ ¼
1

2p

Z 1
�1

e�iax cosh½aðzþ 1Þ�

coshðaÞKþðaÞK1ðaÞ
a2aþ b2 �

BðkÞ

iðaþ kÞKþðkÞ
þ

1

2pi

Z 1�is
�1�is

eizLCþðzÞdz
K�ðzÞðz� aÞ

� �
da. (A.22)

After taking the derivative of Eq. (A.22) with respect to z ¼ 0, we obtain

qjðsÞ

qz
ðx; 0Þ ¼

1

2p

Z 1
�1

ae�iax tanhðaÞK�ðaÞ
K2ðaÞ

a2aþ b2 �
BðkÞ

iðaþ kÞKþðkÞ
þ

1

2pi

Z 1�is
�1�is

eizLCþðzÞdz
K�ðzÞðz� aÞ

� �
da. (A.23)

The function K�(z) has zeros at the points aj (j ¼ �2,�1,0,y) and first-order poles at the points k, kj (j ¼ 1,2,3,y)

and z ¼ a. For the inner integral, we close the integration contour in the upper half-plane and evaluate this integral with

the residue calculus technique. Hence, we obtain

1

2pi

Z 1�is
�1�is

eizLCþðzÞdz
K�ðzÞðz� aÞ

¼
eiaLCþðaÞ

K�ðaÞ
þ
X1
j¼�2

eiajLCþðajÞ

K 0�ðajÞðaj � aÞ
.

Substituting the above equation into Eq. (A.23), we can get

qjðsÞ

qy
ðx; 0Þ ¼

1

2p

Z 1
�1

ae�iax tanhðaÞK�ðaÞ
K2ðaÞ

a2aþ b2 �
BðkÞ

iðaþ kÞKþðkÞ

� �
da

þ
1

2p

Z 1
�1

ae�iaðx�LÞ tanhðaÞCþðaÞ
K2ðaÞ

daþ
1

2p

X1
j¼�2

eiajLCþðajÞ

K 0�ðajÞ

Z 1
�1

ae�iax tanhðaÞK�ðaÞ
K2ðaÞðaj � aÞ

da. ðA:24Þ

For the first and third integrals, the integration contours are closed in the lower half-plane and for the second integral

in the upper half-plane as shown in Fig. A1. Using the residue calculus technique, we can obtain the following

expression for qj(s)/qz (x,0):

qjðsÞ

qz
ðx; 0Þ ¼ � i

X1
m¼�2

eiamxam tanhðamÞK�ð�amÞ

K 02ð�amÞ
�a2am þ b2 �

BðkÞ

iðk � amÞKþðkÞ
þ
X1
j¼�2

eiaj LCþðajÞ

K 0�ðajÞðaj þ amÞ

" #

� eigx þ i
X1

m¼�2

e�iamðx�LÞam tanhðamÞCþðamÞ

K 02ðamÞ
. ðA:25Þ

From Eqs. (7) and (A.25), we have

qj
qz
ðx; 0Þ ¼ � i

X1
m¼�2

eiamxam tanhðamÞK�ð�amÞ

K 02ð�amÞ
�a2am þ b2 �

BðkÞ

iðk � amÞKþðkÞ
þ
X1
j¼�2

eiaj LCþðajÞ

K 0�ðajÞðaj þ amÞ

" #

þ i
X1

m¼�2

e�iamðx�LÞam tanhðamÞCþðamÞ

K 02ðamÞ
. ðA:26Þ

Similarly, taking into account Eqs. (3a), (5c) and (A.26), we obtain

wðxÞ ¼ i
qj
qz
ðx; 0Þ ¼

X1
m¼�2

eiamxam tanhðamÞK�ð�amÞ

K 02ð�amÞ
�a2am þ b2 �

BðkÞ

iðk � amÞKþðkÞ
þ
X1
j¼�2

eiajLCþðajÞ

K 0�ðajÞðaj þ amÞ

" #

�
X1

m¼�2

e�iamðx�LÞam tanhðamÞCþðamÞ

K 02ðamÞ
, ðA:27Þ

F ðxÞ ¼
X1

m¼�2

qam tanhðamÞK�ð�amÞN1ðamÞe
iamx

K 02ð�amÞ
�a2am þ b2 �

BðkÞ

iðk � amÞKþðkÞ
þ
X1
j¼�2

eiajLCþðajÞ

K 0�ðajÞðaj þ amÞ

" #

�
X1

m¼�2

qam tanhðamÞCþðamÞN1ðamÞe
�iamðx�LÞ

K 02ðamÞ
. ðA:28Þ
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Substituting Eqs. (A.27) and (A.28) into the boundary conditions (6a) and (6b) at x ¼ 0, we can obtain the following

two equations:

X1
m¼�2

a3m tanhðamÞK�ð�amÞN1ðamÞ

K 02ð�amÞ
�a2am þ b2 �

BðkÞ

iðk � amÞKþðkÞ
þ
X1
j¼�2

eiaj LCþðajÞ

K 0�ðajÞðaj þ amÞ

" #

�
X1

m¼�2

eiamLa3m tanhðamÞCþðamÞN1ðamÞ

K 02ðamÞ
¼ 0, ðA:29Þ

X1
m¼�2

a2m tanhðamÞK�ð�amÞN2ðamÞ

K 02ð�amÞ
�a2am þ b2 �

BðkÞ

iðk � amÞKþðkÞ
þ
X1
j¼�2

eiaj LCþðajÞ

K 0�ðajÞðaj þ amÞ

" #

þ
X1

m¼�2

a2me
iamL tanhðamÞCþðamÞN2ðamÞ

K 02ðamÞ
¼ 0. ðA:30Þ

Following a similar procedure as above, we find the expressions for the two unknown constants a2, b2:

a2 ¼
P22Q1 � P12Q2

ðP11P22 � P12P21Þ
þ
X4
s¼1

wsbðwsÞ½N2ðwsÞP12 � wsN1ðwsÞP22�

b0ðwsÞKþðwsÞðP11P22 � P12P21Þ

1

2pi

Z
Cþ

eiaLCþðaÞda
K�ðaÞða� wsÞ

þ
bðigÞðqP12 � igP22Þ

2bðigÞðP11P22 � P12P21Þ

1

2pi

Z
Cþ

eiaLCþðaÞ
K�ðaÞKþðigÞða� igÞ

da

þ
bðigÞðqP12 þ igP22Þ

2bðigÞðP11P22 � P12P21Þ

1

2pi

Z
Cþ

eiaLCþðaÞ
K�ðaÞKþð�igÞðaþ igÞ

da, ðA:31Þ

b2 ¼
P21Q1 � P11Q2

ðP12P21 � P11P22Þ
þ
X4
s¼1

wsbðwsÞ½N2ðwsÞP11 � wsN1ðwsÞP21�

b0ðwsÞKþðwsÞðP12P21 � P11P22Þ

1

2pi

Z
Cþ

eiaLCþðaÞda
K�ðaÞða� wsÞ

þ
bðigÞðqP11 � igP21Þ

2bðigÞðP12P21 � P11P22Þ

1

2pi

Z
Cþ

eiaLCþðaÞ
K�ðaÞKþðigÞða� igÞ

da

þ
bðigÞðqP11 þ igP21Þ

2bðigÞðP12P21 � P11P22Þ

1

2pi

Z
Cþ

eiaLCþðaÞ
K�ðaÞKþð�igÞðaþ igÞ

da, ðA:32Þ

where

P11 ¼
1

2pi

Z
C�

a3bðaÞN1ðaÞda
bðaÞKþðaÞ

; P12 ¼
1

2pi

Z
C�

a2bðaÞN1ðaÞda
bðaÞKþðaÞ

,

P21 ¼
1

2pi

Z
C�

a2bðaÞN2ðaÞda
bðaÞKþðaÞ

; P22 ¼
1

2pi

Z
C�

abðaÞN2ðaÞda
bðaÞKþðaÞ

,

Q1 ¼
1

2pi

Z
C�

a2bðaÞBN1ðaÞda
iðk þ aÞKþðkÞbðaÞKþðaÞ

;Q2 ¼
1

2pi

Z
C�

abðaÞBN2ðaÞda
iðk þ aÞKþðkÞbðaÞKþðaÞ

.
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